


# YR series Laboratory pH/ORP/Ion/Conductivity/DO Meters Models YR01827 & YR01828



### Table of **Contents**

### General Guide

| Introduction                              | 03 |
|-------------------------------------------|----|
| Environmental Conditions                  | 03 |
| Packing List                              |    |
| Meter Overview                            |    |
| Connectors                                |    |
| • Keypad                                  |    |
| Installing the Electrode Holder           |    |
| Switching the Meter On and Off            | 05 |
| General Settings                          |    |
| Setting a Default Option                  |    |
| Setting the Date and Time                 |    |
| Setting the Password                      | 07 |
| Unlock the Password                       | 07 |
| Factory Reset                             | 07 |
| Temperature Calibration                   | 08 |
| Connecting the Temperature Probe          |    |
| Calibrating the Temperature Probe         |    |
| рН                                        |    |
| Prior to Use                              | 09 |
| Connecting the pH Electrode               |    |
| Selecting the Measurement Mode            |    |
| pH Settings                               |    |
| Temperature Compensation                  | 10 |
| Automatic Temperature Compensation        | 10 |
| Manual Temperature Compensation           | 10 |
| pH Calibration                            | 11 |
| Single Point Calibration                  | 11 |
| Multipoint Calibration                    | 11 |
| pH Calibration with Custom Buffers        |    |
| Viewing the Calibration Log               | 12 |
| pH Measurement                            |    |
| Electrode Maintenance                     |    |
| Cleaning the pH Electrode                 |    |
| Reactivating the pH Electrode             |    |
| Storing the pH Electrode                  |    |
| Appendix                                  |    |
| Preparation of pH Buffer Solutions        | 14 |
| Preparation of Electrode Storage Solution |    |
| Optional Accessories                      | 14 |
|                                           |    |

#### ORP

| Prior to Use                              | 15 |
|-------------------------------------------|----|
| Connecting the ORP Electrode              | 15 |
| Selecting the Measurement Mode            | 15 |
| ORP Calibration                           | 16 |
| Viewing the Calibration Log               | 16 |
| mV Measurement                            | 17 |
| Electrode Maintenance                     | 17 |
| Storing the ORP Electrode                 |    |
| Appendix                                  | 18 |
| Preparation of ORP Standard Solutions     | 18 |
| Preparation of Electrode Storage Solution | 18 |

#### lon

| Prior to Use                                    | 19 |
|-------------------------------------------------|----|
| Connecting the Ion Selective Electrode          | 19 |
| Selecting the Measurement Mode                  | 19 |
| Ion Settings                                    | 20 |
| Temperature Compensation                        | 21 |
| Automatic Temperature Compensation              | 21 |
| Manual Temperature Compensation                 | 21 |
| Calibration                                     | 21 |
| Ion Concentration Calibration                   | 23 |
| Water Hardness Calibration                      |    |
| Viewing the Calibration Log                     | 23 |
| Ion Measurement                                 |    |
| Direct Reading                                  | 24 |
| Known Addition                                  |    |
| Known Subtraction                               | 25 |
| • Sample Addition                               |    |
| Sample Subtraction                              |    |
| Electrode Maintenance                           |    |
| Appendix                                        | 25 |
| Preparation of Ion Standard Solution            |    |
| Preparation of Water Hardness Standard Solution |    |
| Optional Accessories                            |    |
| •                                               |    |

# Conductivity/ TDS/Salinity/Resistivity/Conductivity Ash

| Prior to Use                                      | 27 |
|---------------------------------------------------|----|
| Connecting the Conductivity Electrode             | 27 |
| Selecting the Measurement Mode                    |    |
| Conductivity/TDS Settings                         | 28 |
| Temperature Compensation                          |    |
| Automatic Temperature Compensation                |    |
| Manual Temperature Compensation                   | 29 |
| Selecting a Conductivity Electrode                | 29 |
| Conductivity Calibration                          |    |
| Single Point Calibration                          |    |
| Multipoint Calibration                            | 30 |
| Viewing the Calibration Log                       |    |
| Measurements                                      |    |
| Conductivity/TDS/Salinity/Resistivity Measurement | 31 |
| Conductivity Ash Measurement                      |    |
| Electrode Maintenance                             |    |
| Appendix                                          | 32 |
| Calculating the Temperature Coefficient           |    |
| Calculating the Cell Constant                     |    |
| Calculating the TDS Conversion Factor             |    |
| Conductivity to TDS Conversion Factors            |    |
| Optional Accessories                              |    |
| •                                                 |    |

#### **Dissolved Oxygen**

| Prior | to Use                                  | 33 |
|-------|-----------------------------------------|----|
| •     | Filling the Electrolyte Solution        | 33 |
| •     | Connecting and Polarizing the Electrode | 33 |
| •     | Selecting the Measurement Mode          | 34 |

| Dissolved Oxygen Settings           | 34   |
|-------------------------------------|------|
| Dissolved Oxygen Calibration        | . 34 |
| DO Calibration in mg/L or ppm Mode  | . 35 |
| DO Calibration in % Saturation Mode | 36   |
| Measurements                        | 37   |
| Dissolved Oxygen Measurement        | 37   |
| BOD Measurement                     | 37   |
| OUR/SOUR Measurement                | . 38 |
| Electrode Maintenance               | 39   |
| Appendix                            | 39   |
| Preparation of Zero Oxygen Solution | . 39 |
| Preparation of Air-Saturated Water  |      |
| Optional Accessories                |      |
| •                                   |      |

#### Data Management

| Storing a Measurement Result | . 41 |
|------------------------------|------|
| Viewing the Data Logs        | . 41 |
| Deleting the Data Logs       | . 42 |
| Print                        | . 42 |

#### Communication

| Receiving the Data     | 42 |
|------------------------|----|
| Creating an Excel File | 42 |
| Interval Readings      | 42 |
| -                      |    |

| Specifications 43 |
|-------------------|
|-------------------|

### General Guide

This section is applicable to all models of meters

### Introduction

Thank you for selecting the A series laboratory meter, this product series includes models below.

| Model   | Measurement Parameters                                     |
|---------|------------------------------------------------------------|
| YR01821 | pH, mV, ORP                                                |
| YR01825 | pH, mV, ORP, ion, water hardness                           |
| YR01827 | Conductivity, TDS, salinity, resistivity, conductivity ash |
| YR01828 | Conductivity, TDS, salinity, resistivity                   |
| YR01831 | Dissolved oxygen, BOD, OUR, SOUR                           |
| YR01832 | Dissolved oxygen                                           |

This user manual provides a step-by-step guide to help you operate the meter, please carefully read the following instructions according to the model you have purchased.

#### **Environmental Conditions**

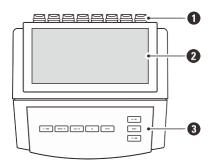
Before unpacking, ensure that current environmental conditions meet the following requirements.

- Relative humidity is less than 80%
- Ambient temperature between 0°C (32°F) and 50°C (122°F)
- No potential electromagnetic interference
- No corrosive gas exists

#### Packing List

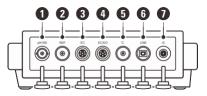
The following list describes all components of the meter. If any items are missing or damaged, contact the supplier immediately.

| Meter, electrode arm                  |                       |
|---------------------------------------|-----------------------|
| 2<br>Base plate, power adapter        |                       |
| 3<br>pH electrode, pH buffer reagents | AHDAN ANTAN AKABASZYG |


| 4                         |          |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|---------------------------|----------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                           |          |          |         | Promise to a design of the second sec |         | Including States and Party States State |   |
| on selective electrode, s | tandard  | l soluti | ons, io | nic stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ength a | Idjuster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * |
| 5                         |          |          | 84.0    | Transi i da di<br>1413 - an<br>1413 - an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Conductivity electrode, c | onducti  | vity sta | andard  | solutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ons     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 6<br>:                    |          |          |         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Dissolved oxygen electroo | de, elec | trolyte  | soluti  | on, me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mbran   | e cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 7                         |          |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Temperature probe         |          |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| ndex:                     |          |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Model / Components        | 1        | 2        | 3       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 |
| YR01821/YR01825           | •        | •        | •       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • |
| YR01827/YR01828           | •        | •        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • |

★ A131-Cn cyanide and A131-S sulfide ion meters do not provide above solutions

• •


### Meter Overview

YR01831/YR01832



- 1 Sensor connections
- 2 Display
- 3 Membrane keypad

#### Connectors



| 1 | Socket for pH, ORP or ion selective electrode (BNC)                                |
|---|------------------------------------------------------------------------------------|
| 2 | Socket for reference electrode (3.5 mm jack)                                       |
| 3 | Socket for 4-pole conductivity electrode (6-pin DIN)                               |
| 4 | Socket for 2-pole conductivity electrode or dissolved oxygen electrode (6-pin DIN) |
| 5 | Socket for temperature probe (3.5 mm jack)                                         |
| 6 | USB-B interface to the computer or printer                                         |
| 7 | Socket for power adapter                                                           |

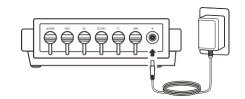
#### Keypad

٠

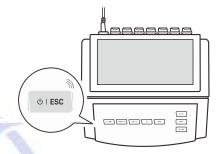
| Key        | Function                                                                                                    |
|------------|-------------------------------------------------------------------------------------------------------------|
| ଏ । ESC    | <ul><li>Switch the meter on or off</li><li>Return to measurement mode</li></ul>                             |
| Mode   °C  | <ul><li>Select the measurement mode</li><li>Press and hold the key to set the temperature</li></ul>         |
| Cal 🗎      | <ul><li>Start calibration</li><li>Press and hold the key to enter the setup menu</li></ul>                  |
| ≏<br>Print | Lock or unlock the measurement                                                                              |
| ▲ MI       | • Print a measurement                                                                                       |
| ▼ MR       | <ul><li>Store current reading to memory</li><li>Increase value or scroll up the menu items</li></ul>        |
| Enter      | <ul><li>View the data log or calibration log</li><li>Decrease value or scroll down the menu items</li></ul> |
|            | Confirm the calibration or displayed option                                                                 |

### Installing the Electrode Holder

1.1 Take out the electrode arm and base plate from the accessory box. Turn the meter over. Align the base plate with the circular holes on the meter, moderately tighten two screws.


# 

1.2 The base plate of electrode arm has a circular hole, the electrode arm has a connecting rod. Insert the connecting rod into the circular hole and swivel the electrode arm 90°. Electrode holder is now ready to swing into desired position.




### Switching the Meter On and Off

1. Connect the power adapter to the meter and wall outlet.



2. Press and hold the  $\bigcirc$  key to switch on or off the meter.



#### Adjusting the Electrode Arm

After installation, if the electrode arm automatically rises or falls, you are able to adjust the screw until arm locate at any position.

- 2.1 Remove the plastic cover from the right side of the electrode arm.
- 2.2 Use the screwdriver to tighten the screw moderately.



2.3 Insert the plastic cover to previous position.

### **General Settings**

The YR series meter contains 10 general settings in the setup menu, the following table describes the functions of each menu item.

| Settings           |   |                                                       |  |
|--------------------|---|-------------------------------------------------------|--|
|                    |   |                                                       |  |
| Temperature Unit   | 8 | Temperature Unit<br>Set the default temperature unit. |  |
| Stability Criteria |   |                                                       |  |
| Auto-Read          |   | ≡ °C                                                  |  |
| Auto-Power Off     |   | ÷                                                     |  |
| Date and Time      |   |                                                       |  |
| Interval Readings  |   |                                                       |  |
| Password           |   |                                                       |  |

Menu Items and Options

#### **Temperature Unit**

Set the default temperature unit.

| °C | Default |
|----|---------|
| °F |         |

#### **Stability Criteria**

Set when a measurement is recognized as stable.

| Standard |  |  |  |
|----------|--|--|--|
|          |  |  |  |

High-accuracy

#### Auto-Read

If enabled, the meter will automatically sense a stable reading and lock the measurement, the Hold icon appears on the screen.

| Enable  |         |
|---------|---------|
| Disable | Default |

#### Auto-Power Off

If enabled, the meter will automatically switch off if no key is pressed within 3 hours.

| Enable  |         |
|---------|---------|
| Disable | Default |

#### Date and Time

Set the year, month, day, hour, minute for data log and calibration log.

#### **Interval Readings**

Set the time interval for sending reading to the printer or computer.

| Off                | Default |
|--------------------|---------|
| 10, 30, 60 seconds |         |

10, 30 minutes

#### Password

Set the password protection for calibration and settings. If enabled, the user must enter a 4-digit password to access above modes. If the setting value is 0000, the password protection will invalid.

#### Enable Disable

Default

#### Brightness

Set the brightness level of backlight.

Low, mid, high

#### **Clear Stored Data**

Delete all data logs in the memory.

| Disable |         |
|---------|---------|
| Disable | Default |

#### Factory Reset

Default

Reset the meter to factory default settings. If enabled, all of the meter settings and calibration logs will be deleted and reset, the meter must be recalibrated.

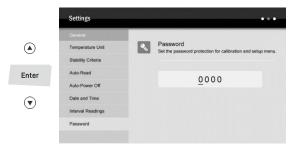
| Enable  |         |
|---------|---------|
| Disable | Default |

#### Setting a Default Option

- 1.1 In the measurement mode, press and hold the 🖹 key to enter the setup menu.
- 1.2 Press the  $\blacktriangle$  /  $\blacktriangledown$  key to select an option or set a value, press the Enter key to confirm.
- 1.3 Repeat the steps above until the meter returns to the measurement mode.

#### Setting the Date and Time

- 2.1 In the measurement mode, press and hold the 🗈 key to enter the setup menu.
- 2.2 Press the ▲ key to highlight *Date and Time*, press the Enter key to confirm.
- Press the ▲ / ▼ key to set the Year, press the Enter key to save and move the cursor to Month.
- 2.4 Repeat the steps above to set the month, day, hour, minute until the meter returns to the measurement mode.


| Ŵ                       | Settings           |   |                                  |         |                   |
|-------------------------|--------------------|---|----------------------------------|---------|-------------------|
| al I 🗈                  | General            |   | keen meet                        |         |                   |
| Call                    | Temperature Unit   | 0 | Date and Tin<br>Set the date and |         | to the data loos. |
|                         | Stability Criteria |   |                                  |         |                   |
| igenup                  | Auto-Read          |   |                                  | 10      | -                 |
| $\overline{\mathbf{v}}$ | Auto-Power Off     |   | 2021                             | 12      | 7                 |
| $\odot$                 | Date and Time      |   | Year                             | Month   | Day               |
| nter                    | Interval Readings  |   | 10                               | 55      | 11                |
|                         | Password           |   | Hour                             | Minutes | Seconds           |

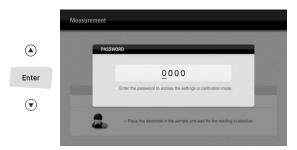
#### Setting the Password

- 3.1 In the measurement mode, press and hold the  $\square$  key to enter the setup menu.
- 3.2 Press the  $\blacktriangle$  key to highlight *Password*, press the Enter key to confirm.



3.3 Press the ▲ key to select the Enable. Press the Enter key, the screen shows 0000.




3.4 Press the ▲ / ▼ key to set the password, press the Enter key to confirm each digit until the meter returns to the measurement mode.

#### Unlock the Password

If your password has been created, the meter will show a password protection screen when pressing the Cal key. Press the  $\blacktriangle$  /  $\checkmark$  key to enter the password, press the Enter key to confirm. If password is correct, the meter will unlock immediately.

#### İ

If you forgot your password, please contact the supplier and providing the serial number of meter.



#### **Factory Reset**

- 4.1 In the measurement mode, press and hold the  $\square$  key to enter the setup menu.
- 4.2 Press the ▲ key to highlight *Factory Reset*, press the Enter key to confirm.

|         | Settings                           | ull.Q.e.: |                                                               | ••• |
|---------|------------------------------------|-----------|---------------------------------------------------------------|-----|
| Cal   🗈 | General<br>Brightness              | ×         | Factory Reset<br>Reset the meter to factory default settings. |     |
|         | Clear Stored Data<br>Factory Reset |           | Enable                                                        |     |
| Enter   |                                    |           | Disable                                                       |     |
|         |                                    |           |                                                               |     |

4.3 Press the ▲ key to select the *Enable*, press the Enter key, the screen shows "Are you sure you want to reset the meter?"

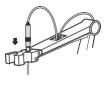
|       | Settings                  |         |                                                                                                   |   |
|-------|---------------------------|---------|---------------------------------------------------------------------------------------------------|---|
|       | General<br>Brightness     | WARNING |                                                                                                   | - |
| Enter | Clear Store<br>Factory Re | Q       | Are you sure you want to reset the meter?<br>Press Enter key to confirm or the ESC key to cancel. |   |
|       |                           |         |                                                                                                   |   |
|       |                           |         |                                                                                                   |   |

4.4 Press the Enter key to confirm or the ESC key to cancel.

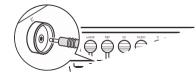
### 0

To exit the setting without saving changes, press the ESC key.

### **Temperature Calibration**


The A series meter is supplied with a TP-10K temperature probe for measurement and temperature compensation. If the measured temperature reading differs from that of an accurate thermometer, the probe needs to be calibrated.

#### 4

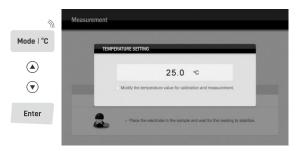

The dissolved oxygen electrode installed with a built-in temperature sensor and do not need to use this probe.

#### Connecting the Temperature Probe

1.1 Place the temperature probe into the circular hole located at the center of the electrode arm.



1.2 Insert the jack plug to the connector socket labeled °C. Ensure the connector is fully seated.




#### Calibrating the Temperature Probe

2.1 Place the temperature probe in a solution with a known accurate temperature and wait for the reading to stabilize.



- 2.2 Press and hold the °C key to enter the temperature setting.
- 2.3 Press the  $\blacktriangle$  /  $\blacktriangledown$  key to modify the temperature value, press the Enter key to save.

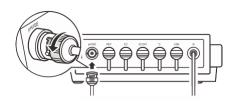


#### Í

To exit the calibration without saving changes, press the ESC key.


### Prior to Use

#### Connecting the pH Electrode


1. Take out the pH electrode from packaging. Remove the protective cap from the bottom of electrode. If tiny air bubbles are present inside the pH-sensitive glass membrane, gently shake the electrode downward to remove air bubbles.



2. Place electrode into the left or right side of the electrode arm.



 Insert BNC connector into the connector socket labeled pH/ISE. Rotate and push the connector clockwise until it locks.



#### Selecting the Measurement Mode

Press the **Mode** key and the  $\checkmark$  key to select the *pH*, press the **Enter** key to confirm.

|           | Measurement                                                              |
|-----------|--------------------------------------------------------------------------|
| Node   °C | MEASUREMENT MODE                                                         |
| $\odot$   | PH mV                                                                    |
| Enter     | ORP                                                                      |
| _         | Place the electrode in the sample and wait for the reading to stabilize. |

# YR01821/YR01825

### pH Calibration and Measurement

This section is applicable to models YR01821 and YR01825

### pH Settings

The A series meter contains 7 pH settings and 10 general settings in the setup menu.

Menu Items and Options

#### Sample ID

Set the sample ID to associate reading with the data log.

0000 to 9999

Default 0000

#### pH Buffer Group

Set the pH buffer group for calibration and auto-recognition.

| USA                                     | Default |
|-----------------------------------------|---------|
| NIST                                    |         |
| DIN                                     |         |
| Custom (any 2 to 5 values > 1 pH apart) |         |

#### **Calibration Points**

Set the number of calibration points.

| 1 to 5 points | Default 3 points |
|---------------|------------------|
|---------------|------------------|

#### Resolution

Set the resolution of the pH measurement.

| 0.001 | Default |
|-------|---------|
|-------|---------|

0.01

#### STC

Solution Temperature Coefficient is used to correct the pure water samples with a conductivity of less than 30  $\mu$ S/cm. If enabled, the readings will automatically reference to 25°C (77°F).

| High purity water                         |         |
|-------------------------------------------|---------|
| Sample contained the ammonia or phosphate |         |
| Off                                       | Default |

#### Alarm Limits

Set the high and low limit values to activate alarm.

| Enable (setting range: -2.00 to 20.00 pH) |         |
|-------------------------------------------|---------|
| Disable                                   | Default |

#### **Calibration Due**

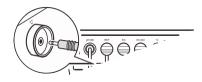
Set the calibration interval to activate alarm.

Enable (setting range: 1 to 31 days)

Disable

If you want to change the current settings, press and hold the key to enter the setup menu, press the  $\blacktriangle$  /  $\checkmark$  key to select an option or set a value, press the **Enter** key to confirm.

#### 0


- During the setting process, press and hold the ▲ / ▼ key will make the value change faster.
- To exit the setting without saving changes, press the ESC key.

### **Temperature Compensation**

For better accuracy, we recommend the use of either a sensor with a built-in or a separate temperature probe. The meter will calculate the pH slope with measured temperature and show the temperature compensated readings.

#### Automatic Temperature Compensation

Connect the temperature probe to meter (refer to the *Connecting the Temperature Probe* section on page 8).



The ATC icon appears on the screen, the meter is now switched to the automatic temperature compensation mode.

| ATC          | 7.0             | 00        | рН |
|--------------|-----------------|-----------|----|
| Temperature  | Electrode Slope | Sample ID |    |
| 25.0°C (ATC) | 99.9 %          | 0000      |    |

#### Manual Temperature Compensation

If the meter does not detect a temperature probe, the MTC icon will show on the screen indicating the meter is switched to the manual temperature compensation mode. To set the temperature value follow the steps below.

- 1. Press and hold the °C key to enter the temperature setting.
- 2. Press the  $\blacktriangle$  /  $\blacktriangledown$  key to modify the temperature value.
- 3. Press the Enter key to save.

#### Ø

Default

Press and hold the  $\blacktriangle$  /  $\blacktriangledown$  key will make the value change faster.

### pH Calibration

The A series meter allows 1 to 5 points pH calibration. We recommend that you perform at least 2 points calibration for high accuracy measurement. The meter will automatically recognize and calibrate to following standard buffer values.

| USA Standard Buffers  | pH 1.68, 4.01, 7.00, 10.01, 12.45      |
|-----------------------|----------------------------------------|
| NIST Standard Buffers | pH 1.68, 4.01, 6.86, 9.18, 12.45       |
| DIN Standard Buffers  | pH 1.09, 3.06, 4.65, 6.79, 9.23, 12.75 |

If the Custom option is selected, the meter will allow 2 to 5 points calibration. Single point calibration should only be carried out with pH 7.00, 6.86 or 6.79, otherwise calibration will not be accepted.

Make sure to calibrate the meter when attaching a new pH electrode or during first use. Do not reuse the buffer solutions after calibration, contaminants in solution will affect the calibration and eventually the accuracy of the measurement.

For better result, we recommend to enable the automatic temperature compensation. If the manual temperature compensation is selected, all buffer and sample solutions must be at the same temperature and you have entered the correct temperature value to the meter.

Stir the standards and samples at a uniform rate that will help you get most accurate readings.

#### Setting the Number of Calibration Points

- 1. Press and hold the  $\square$  key to enter the setup menu.
- Press the ▼ key to highlight Calibration Points, press the Enter key to confirm.
- Press the ▲ / ▼ key to select the number of calibration points, press the Enter key to save.



#### Single Point Calibration

- 1.1 Ensure that you have selected 1 point calibration in the setup menu.
- 1.2 Press the **Cal** key, the screen shows "Calibration Point 7.00" (or 6.86, 6.79, depending on the selected pH buffer group).

|         | Calibration - pH  |                                                                                                                                        |    |
|---------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------|----|
| Cal   🗈 | Calibration Point | 7.00                                                                                                                                   | рН |
|         | 2                 | First point must be pH7.00  • Rinse the electrode and place into the calibration solution. • Press Enter key to begin the calibration. |    |

1.3 Rinse the pH electrode with distilled water, place the electrode (and temperature probe) into the pH 7.00 buffer solution, stir gently to create a homogeneous solution.



1.4 Press the Enter key, the status bar shows "Calibrating..."

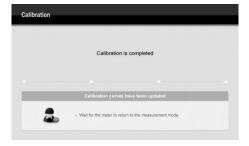
|       | Calibration - pH  |                                                                                                                    |
|-------|-------------------|--------------------------------------------------------------------------------------------------------------------|
| Enter | Calibration Point | <b>7.00</b> PH                                                                                                     |
|       | Calibrating       | 0.0 mV     . Wait for the reading to stabilize.     . Approximately 30 second depending on the sensor performance. |

1.5 Wait for the mV reading to stabilize, the meter will automatically show "Calibration is completed" and return to the measurement mode.

#### **Multipoint Calibration**

- 2.1 Ensure that you have selected 2 to 5 points calibration in the setup menu.
- 2.2 Repeat steps 1.2 through 1.4 above. When the first calibration point is completed, the screen will show "Calibration Point 2", the meter prompts you to continue with second point calibration.

| Calibration Point |                                                                                             | 2                              |
|-------------------|---------------------------------------------------------------------------------------------|--------------------------------|
|                   |                                                                                             |                                |
|                   | Waiting to recognize the calibr                                                             | ation solution                 |
|                   | <ul> <li>Rinse the electrode and place into</li> <li>Press Enter key to confirm.</li> </ul> | the next calibration solution. |


 Rinse the pH electrode with distilled water, place the electrode (and temperature probe) into the next buffer solution (e.g., pH 4.01).



2.4 Press the **Enter** key, the meter automatically recognizes the buffer solution and begins the calibration.



- 2.5 When the mV reading has stabilized, the screen will show "Calibration Point 3", the meter prompts you to continue with third point calibration.
- 2.6 Repeat the steps 2.3 and 2.4 above until the meter returns to the measurement mode. Calibration is completed.



#### pH Calibration with Custom Buffers

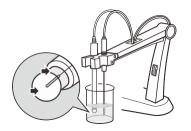
- 3.1 Ensure that you have selected the *Custom* option in the setup menu, the buffer solutions should be at least 1 pH unit apart from each other.
- 3.2 Rinse the pH electrode with distilled water, place the electrode (and temperature probe) into the buffer solution, stir gently and wait until the measurement is stable.
- 3.3 Press the Cal key, the status bar shows "Setting the calibration value".
- 3.4 Press the  $\blacktriangle$  /  $\checkmark$  key to set the value, press the Enter key to begin the calibration.
- 3.5 When the mV reading has stabilized, the status bar will show "Setting the calibration value" again, the meter prompts you to continue with second point calibration.

- 3.6 Repeat the steps 3.2 and 3.4 above until the meter returns to the measurement mode. Calibration is completed.
- Ø
- If the calculated electrode slope is not between 70% to 110% after the calibration, the pH electrode should be replaced.
- To exit the calibration without saving changes, press the ESC key.

#### Viewing the Calibration Log

- 4.1 Press the MR key, the screen shows a Data Log Menu.
- 4.2 Press the Enter key to view the calibration report.

|        | pН                     |               |                   |          |
|--------|------------------------|---------------|-------------------|----------|
| IMR    | Date:                  | 2018 - 1 - 10 | Temperature:      | 25.0 °C  |
| 1 Pitt | Time:                  | 10:25:35      | Offset:           | 0.0 mV   |
|        | pH Buffer Group:       | USA           | Calibration Due:  | 1 Day(s) |
|        | Calibration Points (pi | 4)            | Slope Details (%) |          |
|        | 4.01                   | 7.00          | 100.0             |          |
| Enter  | 7.00                   | 10.01         | 99.7              |          |


4.3 Press the **ESC** key to return to the measurement mode.



If the meter is not calibrated or custom buffer is used, the calibration report will be unavailable.

### pH Measurement

 Rinse the pH electrode with distilled water. Place the electrode (and temperature probe) into the sample solution and stir gently. Note, the pH-sensitive glass membrane and liquid junction must be completely immersed into the solution.



If the option is disabled, the meter will continuously measure and update the readings.



- 3. Wait for the measurement to stabilize and record the reading.
- 4. When all of the samples have been measured, rinse the electrode according to the instructions in the *Electrode Maintenance*.

#### i

- During the measurement process, never wipe the pH-sensitive glass membrane as this will cause static interference, blot dry with a lint-free tissue to remove waterdrops on electrode.
- If your sample is pure water, low ionic or low conductivity water, we recommend measuring the pH in the smallest sample volume possible or adding 0.3 ml of the 3M KCl to 100 ml of the sample solution. Note, only high purity KCl can be used.
- To record the measurement at the predefined time intervals, refer to the *Interval Readings* section on page 42.

### Electrode Maintenance

#### Cleaning the pH Electrode

Since pH electrode is susceptible to contamination, thoroughly clean as necessary after each use.

- General Cleaning Rinse the pH electrode with distilled water and soak in 3M KCl solution.
- Salt Deposits

Dissolve the deposit by immersing the electrode in warm tap water. Rinse the electrode with distilled water and soak in 3M KCl solution.

Oil or Grease

Place the electrode in the detergent or ethanol solution for 15 minutes. Rinse the electrode with distilled water and soak in 3M KCl solution.

- Protein
  - (1) Add 1% pepsin to 0.1M HCl solution.
  - (2) Place the electrode in above solution for 15 minutes.
  - Rinse the electrode with distilled water and soak in 3M KCl solution.
- Clogged Liquid Junction
  - (1) Heat a diluted KCl solution to  $60^{\circ}$ C (140°F).
  - (2) Place the electrode into the heated solution for 10 minutes.
  - (3) Allow the electrode to cool in unheated KCl solution.

#### Reactivating the pH Electrode

If the pH-sensitive membrane has dried out, the electrode response will become sluggish. Immerse the electrode in a pH 4.01 buffer solution for about 30 minutes to rehydrate. If this fails, the electrode requires activation.

- 1. Soak the electrode in a 0.1M of HCl for 10 minutes.
- Remove and rinse with distilled water, then place into a 0.1M of NaOH for 10 minutes.
- 3. Remove and rinse again, and soak in 3M KCl solution for at least 6 hours.

If these steps fail to restore the response, replace the electrode.

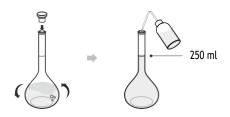
#### Storing the pH Electrode

- For best results, always soak the electrode in 3M KCl solution.
- If above solution is not available, use a pH 4.01 buffer solution.

4

- DO NOT store the electrode in distilled or deionized water that will deplete the hydration layer of the pH-sensitive membrane and render the electrode useless.
- If you do not use the electrode for a period longer than 1 month, store the electrode in storage solution.

### Appendix


#### Preparation of pH Buffer Solutions

The meter is packaged with the pH 4.01, 7.00, 10.01 buffer reagents required for calibration.

1. Half fill a 250 ml volumetric flask with distilled water and add the pH 7.00 buffer reagent.



2. Swirl the volumetric flask gently to dissolve the reagent and fill to the mark with distilled water.



3. Cap and upend the volumetric flask several times to mix the solution.

#### I

- Preparation of pH 4.01 and 10.01 buffer solutions are the same as above.
- Prepared buffer solution should be stored in hermetically sealed glass container and avoid direct sunlight.

#### Preparation of Electrode Storage Solution

- Dissolve 24.6 grams of analytical grade potassium chloride (KCl) reagent in 100 ml distilled water.
- Add pH 4.01 standard buffer and adjust solution to pH 4.

#### **Optional Accessories**

#### pH Electrodes

| Order Code | Description                                    |
|------------|------------------------------------------------|
| E201-BNC   | For general purpose applications               |
| E202-BNC   | For measuring the flat surface samples         |
| P11        | For measuring the non-high temperature liquids |

| P11-LiCl | For measuring the non-aqueous samples       |
|----------|---------------------------------------------|
| P11-NA   | For measuring the biofuels                  |
| P13      | For measuring the micro-volume samples      |
| P15      | For measuring the low conductivity samples  |
| P16      | For measuring the liquids with Tris buffers |
| P18      | For measuring the slurries or soils         |
| P19      | For measuring the semisolids                |
| P21      | For measuring the colloids                  |
| P22      | For measuring the high temperature liquids  |

#### **Temperature Probe**

| Order Code | Description                                          |
|------------|------------------------------------------------------|
| TP-10K     | Range: 0 to 100°C (32 to 221°F), 1 m (3.3 ft.) cable |

#### Solutions

| Order Code | Description                                   |
|------------|-----------------------------------------------|
| PHCS-USA   | pH 4.01, 7.00, 10.01 buffer solutions, 480 ml |
| PHCS-NIST  | pH 4.01, 6.86, 9.18 buffer solutions, 480 ml  |
| PHCS-ES    | Electrode storage solution, 480 ml            |
| PHCS-GC    | Removes inorganic residues, 480 ml            |
| PHCS-PR    | Removes protein contamination, 480 ml         |
|            |                                               |

#### Communication and Power Supply

| Order Code | Description                                  |
|------------|----------------------------------------------|
| USB-2303B  | USB connector A to B, 1 m (3.3 ft.) cable    |
| DCPA-12V   | DC 12V power adapter, european standard plug |

### Electrode Maintenance

- Rinse the ORP electrode thoroughly with distilled water after use.
- In the corrosive chemicals, viscous solutions and solutions with heavy metals or proteins, take readings quickly and rinse electrode immediately.
- If the electrode response becomes sluggish, refer to theinstructions below to clean the electrode.
- (1) Inorganic Deposits

Place the electrode in 0.1M HCl solution for 10 minutes. Rinse the electrode with distilled water and soak in 4M KCl solution for at least 6 hours.

- (2) Oil or Grease Place the electrode in detergent such as dishwashing liquid for about 30 minutes. Rinse the electrode with distilled water and soak in 4M KCl solution.
- (3) If the platinum sensing element is severely contaminated, polish the platinum surface gently with an abrasive paper of 600 grid. Place the electrode in 0.1M HCl solution for 10 minutes. Remove and rinse with distilled water, then soak in 4M KCl solution for at least 6 hours.

If the electrode does not restore normal performance, replace the electrode.

Platinum sensing element

#### Storing the ORP Electrode

If you do not use the electrode for long periods, store the electrode in4M KCl solution or storage solution.



### Appendix

#### Preparation of ORP Standard Solutions

Quinhydrone solution A: Dissolve 3 grams of quinhydrone reagent in 500 ml of the pH 4.01 buffer solution, stir the solution for 10 minutes. Undissolved quinhydrone reagent must be present. If necessary, add the reagent.

| Temperature | Potential (±10 mV) |  |
|-------------|--------------------|--|
| 20°C        | 268 mV             |  |
| 25°C        | 263 mV             |  |
| 30°C        | 260 mV             |  |

Quinhydrone solution B: Dissolve 3 grams of quinhydrone reagent in 500 ml of the pH 7.00 buffer solution, stir the solution for 10 minutes. Undissolved quinhydrone reagent must be present. If necessary, add the reagent.

| Temperature | Potential (±10 mV) |  |
|-------------|--------------------|--|
| 20°C        | 94 mV              |  |
| 25°C        | 87 mV              |  |
| 30°C        | 80 mV              |  |

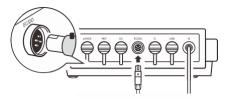
### 4

Due to the quinhydrone solution is susceptible to air oxidation in storage, make sure to prepare the fresh solution before use.

#### Preparation of Electrode Storage Solution

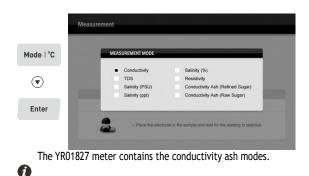
- Dissolve 29.8 grams of analytical grade potassium chloride (KCl) reagent in 100 ml distilled water.
- Add pH 4.01 standard buffer and adjust solution to pH 4.

### Prior to Use


#### Connecting the Conductivity Electrode

1. Take out the conductivity electrode from packaging. Soak the electrode for about 10 minutes in tap water to remove dirt and oil stains on the sensor surface.




2. Place electrode into the left or right side of the electrode arm.

 Insert 6-pin connector into the connector socket labeled EC/DO. Ensure the connector is fully seated.



#### Selecting the Measurement Mode

Press the **Mode** key and the ▼ key to select the conductivity, TDS, salinity or resistivity mode, press **Enter** key to confirm.



# YR01827/YR01828

### Conductivity/ TDS/Salinity/ Resistivity/Conductivity Ash

### Calibration and Measurement

This section is applicable to models YR01827 and YR01828 meters

### Conductivity/ TDS Settings

The A series meter contains 9 conductivity settings, 1 TDS setting and 10 general settings in the setup menu.

| lata log.             |  |
|-----------------------|--|
|                       |  |
| ) to 9999 Default 000 |  |
| de.                   |  |
|                       |  |
| Default               |  |
|                       |  |
| -                     |  |
|                       |  |
| Default 3 points      |  |
|                       |  |

The linear temperature compensation is appropriate for most samples. If the current samples are belong to the natural water, using the non-linear compensation is necessary. Note, non-linear compensation can only be performed at temperature from 0 to 36°C. If the temperature reading is out of above range, the meter will show a warning.

| Linear (setting range: 0.0 to 10.0%/°C) | Default 2.1%/°C |
|-----------------------------------------|-----------------|
| Non-linear                              |                 |

#### Pure Water Coefficient

The pure water coefficient is used to correct the sample solution with a conductivity of less than 5  $\mu$ S/cm. If enabled, the meter will be automatically calculated and applied coefficient for ultra-pure water measurement.

| Enable  |         |
|---------|---------|
| Disable | Default |

#### **Reference Temperature**

Set the normalization temperature for measurement, the readings will automatically compensate to the selected temperature during the measurement.

| 25°C | Default |
|------|---------|
|      |         |

#### TDS Factor

Set the default TDS conversion factor.

| 0.01 to 1.00 | Default 0.50 |
|--------------|--------------|
|              |              |

#### Alarm Limits

Set the high and low limit values to activate alarm.

Enable (setting range: 0 to 999  $\mu\text{S/cm}$  or mS/cm)

Disable Default

#### Calibration Due

Set the calibration interval to activate alarm.

Enable (setting range: 1 to 31 days)

| Disable | Default |
|---------|---------|
|         |         |

If you want to change the current settings, press and hold the key to enter the setup menu, press the  $\blacktriangle$  /  $\checkmark$  key to select an option or set a value, press the **Enter** key to confirm.

#### Ì

- During the setting process, press and hold the ▲ / ▼ key will make the value change faster.
- To exit the setting without saving changes, press the ESC key.

### **Temperature Compensation**

The temperature compensation has a large effect on the conductivity measurement. If enabled, the meter will use the measured conductivity and temperature readings to calculate the result and automatically compensate to the selected reference temperature. If the temperature coefficient is set to 0, the temperature compensation will be disabled, the meter only shows the actual conductivity at the measured temperature.

#### Automatic Temperature Compensation

Connect the temperature probe to meter (refer to the *Connecting the Temperature Probe* section on page 8).



The ATC icon appears on the screen, the meter is now switched to the automatic temperature compensation mode.



#### Manual Temperature Compensation

If the meter does not detect a temperature probe, the MTC icon will show on the screen indicating the meter is switched to the manual temperature compensation mode. To set the temperature value follow the steps below.

- 1. Press and hold the °C key to enter the temperature setting.
- 2. Press the  $\blacktriangle$  /  $\blacktriangledown$  key to modify the temperature value.
- 3. Press the Enter key to save.

#### Í

Press and hold the  $\blacktriangle$  /  $\blacktriangledown$  key will make the value change faster.

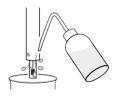
### Selecting a Conductivity Electrode

The A series meter is capable of using three types of the conductivity electrodes. Before the calibration and measurement, ensure that you have selected a suitable electrode according to the anticipated sample conductivity. The following table lists the selectable electrode and its effective measurement ranges.

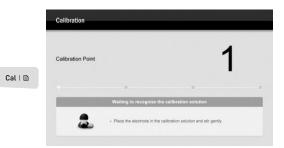
| Electrode | Measurement Range      | Cell Constant |
|-----------|------------------------|---------------|
| CON-0.1   | 0.5 to 100 µS/cm       | K = 0.1       |
| CON-1     | 10 µS/cm to 20 mS/cm   | K = 1         |
| CON-10    | 100 µS/cm to 200 mS/cm | K = 10        |

If the 4-pole conductivity electrode is selected, its best measurement range will be 100  $\mu S/cm$  to 200 mS/cm.

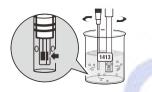
### **Conductivity Calibration**


The A series meter allows 1 to 3 points conductivity calibration. Before calibration, ensure that selected cell constant (K=0.1, 1, 10) matches connected electrode.

For better accuracy, we recommend to perform 3 points calibration or select a standard solution closest to the sample conductivity you are measuring. The meter will automatically detect the standard solution and prompt the user to perform the calibration. The following table shows the default standard solution for each measurement range.


| Measurement Range | Default Standard Solution |
|-------------------|---------------------------|
| 0 to 20 µS/cm     | 10 µS/cm                  |
| 20 to 200 µS/cm   | 84 µS/cm                  |
| 200 to 2000 µS/cm | 1413 µS/cm                |
| 2 to 20 mS/cm     | 12.88 mS/cm               |
| 20 to 200 mS/cm   | 111.8 mS/cm               |

#### **Single Point Calibration**


- 1.1 Ensure that the meter is in the conductivity mode and you have selected 1 point calibration in the setup menu.
- 1.2 Rinse the conductivity electrode with distilled water, then rinse with a small amount of standard solution.



1.3 Press the **Cal** key, the meter shows "Calibration Point 1" and waits for recognizing the standard solution.



1.4 Place the electrode (and temperature probe) into the standard solution, stir gently to remove air bubbles trapped in the slot of the sensor.



The meter will automatically show current calibration standard (e.g., 1413  $\mu$ S/cm). If necessary, press the  $\blacktriangle$  /  $\checkmark$  key to modify the calibration value.



1.5 Press the Enter key, the status bar shows "Calibrating..."



1.6 Wait for the conductivity reading to stabilize, the meter will show "Calibration is completed" and return to the measurement mode.

| Calibration       | is completed        |  |
|-------------------|---------------------|--|
|                   |                     |  |
| Calibration curve | s have been updated |  |

#### **Multipoint Calibration**

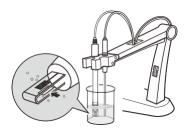
0

- 2.1 Ensure that you have selected 2 to 3 points calibration in the setup menu. When the first calibration point is completed, the screen will show "Calibration Point 2", the meter prompts you to continue with second point calibration.
- 2.2 Rinse the conductivity electrode with distilled water, then rinse with a small amount of standard solution.
- 2.3 Repeat the steps 1.4 and 1.5 above until the meter returns to the measurement mode. Calibration is completed.
- Performing the conductivity calibration will simultaneously calibrate the corresponding TDS, salinity, resistivity and conductivity ash values.
- To exit the calibration without saving changes, press the ESC key.

#### Viewing the Calibration Log

- 3.1 Press the MR key, the screen shows a Data Log Menu.
- 3.2 Press the Enter key to view the calibration report.

|       | Calibration Report |                |                  |                  |
|-------|--------------------|----------------|------------------|------------------|
|       | 2-Pole Electrode   |                |                  |                  |
| MR    | Date:              | 2018 - 1 - 10  | Reference Temp.: | 25 °C            |
|       | Time:              | 10 : 15 : 58   | Calibration Due: | 1 Day(s)         |
|       | Calibration Points | Constant (K=1) | Constant (K=10)  | Constant (K=0.1) |
|       | 10.00 µS/cm        | 1.00           | 10.00            | 0.100            |
| -     | 84.0 µS/cm         | 1.00           | 10.00            | 0.100            |
| Enter | 1413 µS/cm         | 0.98           | 10.00            | 0.100            |
|       | 12.88 mS/cm        | 0.98           | 10.00            | 0.100            |
|       | 111.8 mS/cm        | 1.00           | 10.00            | 0.100            |


3.3 Press the ESC key to return to the measurement mode.

(i) If the meter is not calibrated, the calibration report will be unavailable.

### Measurements

#### Conductivity/ TDS/Salinity/ Resistivity Measurement

1.1 Rinse the conductivity electrode with distilled water. Place the electrode (and temperature probe) into the sample solution and stir gently. Ensure that no air bubbles on the sensor surface.



1.2 If the Auto-Read option in the setup menu is enabled, the meter will automatically sense a stable reading and lock measurement, the Hold icon appears on the screen. Press the key to resume measuring.

If the option is disabled, the meter will continuously measure and update the readings.



- 1.3 Wait for the measurement to stabilize and record the reading.
- 1.4 When all of the samples have been measured, rinse the electrode with distilled water.

#### I

- If the meter shows "Measured values exceed the range", replace a conductivity electrode that is appropriate for the conductivity range of the sample solution you are measuring.
- To record the measurement at the predefined time intervals, refer to the *Interval Readings* section on page 42.

#### **Conductivity Ash Measurement**

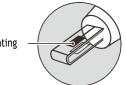
The YR01827 meter contains two conductivity ash measurement modes including the Refined Sugar (ICUMSA GS2/3-17 standard) and RawSugar (ICUMSA GS1/3/4/7/8-13 standard).

2.1 Prepare the sugar sample according to the selected ICUMSA method.

- 2.2 Press the **Mode** key and the ▼ key to select the either Refined Sugar or Raw Sugar measurement mode.
- 2.3 Press the Enter key, the screen shows an input window and waits for entering the conductivity of the used water for preparing sugar solution (range: 0.0 to  $100.0 \ \mu$ S/cm).
- 2.4 Press the ▲ / ▼ key to set the value, press the Enter key to confirm. When the setting is completed, the meter will begin the measurement.

|      | CONDUCTIVITY OF USED WATER                                              |
|------|-------------------------------------------------------------------------|
| 1.00 | <u>0</u> 00.5 µS/cm                                                     |
|      | Enter the conductivity of the used water for preparing samples.         |
|      | Place the electrode in the sample and wait for the reading to stabilize |

- 2.5 Rinse the conductivity electrode with distilled water, place the electrode (and temperature probe) into the sample solution and stir gently. Wait for the measurement to stabilize and record the reading.
- 2.6 When all of the samples have been measured, rinse the electrode with distilled water.


### Ø

Conductivity ash measurement can only be performed at temperature range from  $15^{\circ}$ C to  $25^{\circ}$ C. If the temperature reading is out of above range, the meter will show a warning.

### **Electrode Maintenance**

- Rinse the conductivity electrode thoroughly with distilled water after use.
- Do not touch the platinum black coating on the sensor surface and always keep it clean.

Platinum black coating —



- If there is a build-up of solids inside the sensor, remove carefully, then recalibrate the electrode.
- If you do not use the electrode for long periods, wipe clean with a lint-free tissue and store the electrode in a dry and cool area.
- If your electrode is model CON-10, store the electrode with tap water. This sensor needs to be kept wet always.

### Appendix

#### Preparation of Conductivity Standard Solutions

- Place the analytical grade potassium chloride (KCl) in a beaker and dry in an oven for about 3 hours at 105°C (221°F), then cool to room temperature.
- Add the reagent to a 1 liter volumetric flask according to the instructions in table below.
- Fill the distilled water to the mark, mix the solution until the reagent is completely dissolved.

| Conductivity Standard | Reagent | Weight   |
|-----------------------|---------|----------|
| 84 µS/cm              | KCl     | 42.35 mg |
| 1413 µS/cm            | KCl     | 745.5 mg |
| 12.88 mS/cm           | KCl     | 7.45 g   |
| 111.8 mS/cm           | KCl     | 74.5 g   |

#### Calculating the Temperature Coefficient

- 1. Do not connect the temperature probe to the meter.
- 2. Press and hold the °C key to enter the temperature setting.
- Press the ▲ / ▼ key to set the temperature to 25°C and press the Enter key to confirm.
- 4. Place the conductivity electrode into the sample solution, record the temperature value  $T_A$  and conductivity value  $C_{TA}$ .
- 5. Condition the sample solution and electrode to a temperature  $T_{\rm B}$  that is about 5 to 10°C different from  $T_{\rm A}.$  Record the conductivity value  $C_{TB}.$
- 6. Calculate the temperature coefficient using the formula below.

$$T_{C} = [C_{TB} - C_{TA}] / [C_{TA} (T_{B} - 25) - C_{TB} (T_{A} - 25)]$$

#### Where:

- T<sub>c</sub> = Temperature coefficient
- $C_{TA}$  = Conductivity at temperature A
- $C_{\text{TB}}$  = Conductivity at temperature B
- T<sub>A</sub> = Temperature A
- T<sub>B</sub> = Temperature B

#### Calculating the Cell Constant

- 1. Reset the meter.
- Place the electrode into a standard solution and record the reading.
- 3. Calculate the cell constant using the following formula.

 $K = (C_{std} / C_{meas}) \times G$ 

#### Where:

K = Cell constant

C<sub>std</sub> = Value of conductivity standard solution

C<sub>meas</sub> = Measured value

G = Raw cell constant (0.1, 1 or 10)

#### Calculating the TDS Conversion Factor

To determine the TDS factor of sample solution use the formula below.

Factor = Actual TDS / Actual Conductivity @25°C

#### Where:

Actual TDS = value from the high purity water and precisely weighed NaCl or KCL reagent

Actual Conductivity = the meter measured conductivity value

For example:

Dissolve 64 grams of the potassium chloride (KCl) reagent in 1 liter distilled water. If measured conductivity is 100 mS/cm, then TDS factor is 0.64.

#### Conductivity to TDS Conversion Factors

| Conductivity at 25°C | TDS   | TDS (KCl) |       | TDS (NaCl) |  |
|----------------------|-------|-----------|-------|------------|--|
| Conductivity at 25°C | ppm   | Factor    | ppm   | Factor     |  |
| 84 µS/cm             | 40.38 | 0.5048    | 38.04 | 0.4755     |  |
| 1413 µS/cm           | 744.7 | 0.527     | 702.1 | 0.4969     |  |
| 12.88 mS/cm          | 7447  | 0.5782    | 7230  | 0.5613     |  |

#### **Optional Accessories**

**Conductivity Electrodes** 

| Order Code                     | Description                                                      |  |
|--------------------------------|------------------------------------------------------------------|--|
| CON-0.1                        | For measuring the pure water                                     |  |
| CON-1                          | For general purpose applications                                 |  |
| CON-10                         | For measuring the high conductivity liquids                      |  |
| Temperature P                  | robe                                                             |  |
| Order Code                     | Description                                                      |  |
| TP-10K                         | Range: 0 to 100°C (32 to 221°F), 1 m (3.3 ft.) cable             |  |
| Solutions                      |                                                                  |  |
| Order Code                     | Description                                                      |  |
| ECCS-84                        | Conductivity standard solution 84 $\mu\text{S}/\text{cm},480$ ml |  |
| ECCS-1413                      | Conductivity standard solution 1413 $\mu\text{S/cm},480$ ml      |  |
| ECCS-1288                      | Conductivity standard solution 12.88 mS/cm, 480 ml               |  |
| ECCS-1118                      | Conductivity standard solution 111.8 mS/cm, 480 ml               |  |
| Communication and Power Supply |                                                                  |  |
| Order Code                     | Description                                                      |  |
| USB-2303B                      | USB connector A to B, 1 m (3.3 ft.) cable                        |  |
| DCPA-12V                       | DC 12V power adapter, european standard plug                     |  |
|                                |                                                                  |  |

### Data Management

The YR series meter is capable of storing and recalling up to 1000 data sets.

#### Storing a Measurement Result

During the measurement, press the MI key to store the reading into the memory, the screen shows "Measured value has stored".

|   | MESSAGE                                                                   |
|---|---------------------------------------------------------------------------|
| M | Measured value has stored Press MR key to view the stored or logged data. |
|   |                                                                           |

#### Viewing the Data Logs

1.1 Press the **MR** key and the **▼** key to select the Stored Data.

|      | Data Logs          |
|------|--------------------|
|      | Data Log Menu      |
| ▼∣MR | Ľ                  |
|      | Calibration Report |
|      | Stored Data        |

1.2 Press the Enter key, the screen shows a measurement data list.

|     |        | Date and Time |       |         | Sample ID | Reading  | Temperature |
|-----|--------|---------------|-------|---------|-----------|----------|-------------|
|     |        | Date and Time |       |         | oampia to | Neating  | remperature |
|     | 2018 - | 1 - 1         | 10: 3 | 80 : 59 | 0001      | 7.000 pH | 25.0 °C     |
|     | 2018 - | 1 - 1         | 10: 3 | 85:00   | 0002      | 7.005 pH | 25.0 °C     |
| ter |        | -             | 3     | 1       |           |          |             |
|     | -      |               | :     | :       |           |          |             |
|     |        | -             | :     |         |           |          |             |
|     | -      | - 2           | :     | +       |           |          |             |
|     |        |               |       |         |           |          |             |

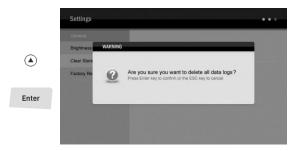
1.3 If necessary, press the  $\blacktriangle$  /  $\blacktriangledown$  key to switch pages.

1.4 Press the **ESC** key to return to the measurement mode.

Whe meter is not store any data, the screen will show a blank page only.

### Data Management

This section is applicable to all models of meters


#### Deleting the Data Logs

If the memory is full, the meter will automatically show a reminder when the  $\rm MI$  key is pressed. To delete data log, please follow the steps below.

- 2.1 Press and hold the Ekey to enter the setup menu.
- 2.2 Press the ▲ key to select the *Clear Stored Data*, press the Enter key to confirm.

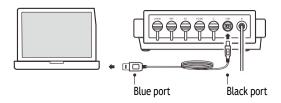


2.3 Press the ▲ key to select the Enable. Press the Enter key, the screen shows "Are you sure you want to delete all date logs?"



2.4 Press the Enter key to confirm or the ESC key to cancel.

### Print


Connect the USB cable to the meter and printer (order code: AB58-GK). Press the **Print** key to print the displayed reading or data logs.

### Communication

The YR series meter can transfer the data to a computer or import thedata to Excel by a DAS software. You are able to download this software from our official website. Before installation, ensure that the Windows 10 operating system has been installed on your computer and you have a USB-2303B data cable.

#### Receiving the Data

1. Connect the black port of the data cable to meter and the blue port to computer.



- Click the DAS\_A\_Series icon, the system automatically scans an available communication port and shows a message box "Found a port on your computer".
- 3. Click the OK, the application starts.
- 4. Click the Connect, the screen shows "Port is connected".
- 5. Click the **OK**, then click the **Receive**, the stored data will transfer to computer automatically.

#### 0

If your computer can not find a communication port, click the "PL2303\_ Prolific\_DriverInstaller\_V1190.exe" to update the drive program.

#### Creating an Excel File

When transfer is completed, click the **Save as Excel**, the readings in data sheet will automatically convert to Excel file.



Note, once the software is closed, all received data will be lost and can not be recovered.

### **Interval Readings**

The A series meter contains an Interval Readings option in setup menu. If enabled, the meter will automatically send the measurement data to a printer or computer at the predefined time.

- 1. Press and hold the Ekey to enter the setup menu.
- Press the ▲ key to select the Interval Readings, press the Enter key to confirm.
- Press the ▲ / ▼ key to select a predefined time, press the Enter key to return to the measurement mode.
- If the meter has been connected to a computer, click the Receive button, the measurement data will automatically transfer to DAS software.

If the meter has been connected to a printer, press the **Print** key to print the displayed reading.

#### i

- Note, the first data needs 1 minute to be shown on the screen.
- Do not press any key on meter during the Interval Readings mode that will cause the communication interruption.

# **Specifications** This section is applicable to all models of meters

### **Meter Specifications**

| рН                       |                                           |  |
|--------------------------|-------------------------------------------|--|
| Range                    | -2.000 to 20.000 pH                       |  |
| Resolution               | 0.001, 0.01 pH                            |  |
| Accuracy                 | ±0.002 pH                                 |  |
| Calibration Points       | 1 to 5 points                             |  |
|                          | USA (pH 1.68, 4.01, 7.00, 10.01, 12.45)   |  |
| pH Buffer Options        | NIST(pH 1.68, 4.01, 6.86, 9.18, 12.45)    |  |
|                          | DIN (1.09, 3.06, 4.65, 6.79, 9.23, 12.75) |  |
| Temperature Compensation | 0 to 100°C (32 to 212°F)                  |  |
| ORP                      |                                           |  |
| Range                    | ±2000.0 mV                                |  |
| Resolution               | 0.1 mV                                    |  |
| Accuracy                 | ±0.2 mV                                   |  |
| Calibration Point        | 1 point (only for ORP mode)               |  |
| Ion Concentration        |                                           |  |
| Range                    | 0.001 to 30000 ppm, mg/L, mol/L, mmol/L   |  |
| Resolution               | 0.001, 0.01, 0.1, 1                       |  |
| Accuracy                 | ±0.5% F.S. (monovalent)                   |  |
| Accuracy                 | ±1% F.S. (divalent)                       |  |
| Calibration Points       | 2 to 5 points                             |  |
| Calibration Solutions    | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000 |  |
| Temperature Compensation | 0 to 100°C (32 to 212°F)                  |  |
| Water Hardness           |                                           |  |
| Range                    | 0.05 to 200 mmol/L                        |  |
| Resolution               | 0.01, 0.1, 1                              |  |
| Accuracy                 | ±1% F.S.                                  |  |
| Calibration Point        | 2 to 5 point                              |  |
| Calibration Solutions    | 0.01, 0.1, 1, 10, 100 mmol/L              |  |
| Temperature Compensation | 0 to 50°C (32 to 122°F)                   |  |
| Conductivity             |                                           |  |
| Range                    | 0.01 µS/cm to 200.0 mS/cm                 |  |
| Resolution               | 0.001, 0.01, 0.1, 1                       |  |
| Accuracy                 | ±0.5% F.S.                                |  |

| Calibration Points       | 1 to 3 points                                |  |  |
|--------------------------|----------------------------------------------|--|--|
| Calibration Solutions    | 10 µS/cm, 84 µS/cm, 1413 µS/cm,              |  |  |
| Calibration Solutions    | 12.88 mS/cm, 111.8 mS/cm                     |  |  |
| Temperature Compensation | 0 to 100°C (32 to 212°F)                     |  |  |
|                          | Linear (0.0 to 10.0%/°C)                     |  |  |
| Temperature Coefficient  | Non-linear                                   |  |  |
|                          | Pure water                                   |  |  |
| Reference Temperature    | 20°C or 25°C                                 |  |  |
| Cell Constant            | 2-pole electrodes (K=0.1, 1, 10)             |  |  |
|                          | 4-pole electrode                             |  |  |
| TDS                      |                                              |  |  |
| Range                    | 0.00 to 100.0 g/L (max. 200 g/L)             |  |  |
| Resolution               | 0.01, 0.1, 1                                 |  |  |
| Accuracy                 | ±1% F.S.                                     |  |  |
| TDS Factor               | 0.01 to 1.00 (default 0.50)                  |  |  |
| Salinity                 |                                              |  |  |
|                          | 0.00 to 80.00 ppt, 0.00 to 42.00 ps          |  |  |
| Range                    | 0.00 to 8.00%                                |  |  |
| Resolution               | 0.01                                         |  |  |
| Accuracy                 | ±1% F.S.                                     |  |  |
| Resistivity              |                                              |  |  |
| Range                    | 0.00 to 30.00 MΩ                             |  |  |
| Resolution               | 0.01, 0.1                                    |  |  |
| Calibration Solutions    | ±1% F.S.                                     |  |  |
| Conductivity Ash         |                                              |  |  |
| Range                    | 0.00 to 100%                                 |  |  |
| Resolution               | 0.01, 0.1, 1                                 |  |  |
| Accuracy                 | ±1% F.S.                                     |  |  |
| Measurement Modes        | Refined sugar or raw sugar                   |  |  |
| Dissolved Oxygen         |                                              |  |  |
| Range                    | 0.00 to 20.00 mg/L, 0.0 to 200.0% saturation |  |  |
| Resolution               | 0.01                                         |  |  |
| Accuracy                 | ±0.2 mg/L, ±2.0%                             |  |  |
| Calibration Points       | 1 or 2 points                                |  |  |
| Temperature Compensation | 0 to 50°C (32 to 122°F)                      |  |  |
|                          |                                              |  |  |

| Pressure Correction     | 60.0 to 112.5 kPa, 450 to 850 mmHg                     |  |
|-------------------------|--------------------------------------------------------|--|
| Salinity Correction     | 0.0 to 50.0 g/L                                        |  |
| Temperature             |                                                        |  |
| Range                   | 0 to 105°C (32 to 221°F)                               |  |
| Resolution              | 0.1°C (0.1°F)                                          |  |
| Accuracy                | ±0.5°C (±0.9°F)                                        |  |
| Calibration Point       | 1 point                                                |  |
| Other Specifications    |                                                        |  |
| Memory                  | 1000 data sets                                         |  |
| Communication Interface | USB-B                                                  |  |
| Operating Temperature   | 0 to 50°C (32 to 122°F)                                |  |
| Storage Temperature     | 0 to 60°C (32 to 140°F)                                |  |
| Relative Humidity       | < 80% (non-condensing)                                 |  |
| Display                 | 7 in. TFT LCD                                          |  |
| Power Requirements      | DC 12V/2A power adapter                                |  |
| Dimensions              | 240 (L) × 220 (W) × 80 (H) mm<br>(9.4 × 8.6 × 3.1 in.) |  |
| Weight                  | 1.7 kg (3.7 lb)                                        |  |

#### Disposal

This product is required to comply with the European Union's Waste Electrical and Electronic Equipment (WEEE) Directive 2002/96/EC and may not be disposed of in domestic waste. Please dispose of product in accordance with local regulations at the collecting point specified for electrical and electronic equipment.



#### Warranty

The warranty period for meter is one year from the date of shipment. Above warranty does not cover the electrodes and standard solutions. Out of warranty products will be repaired on a charged basis. The warranty on your meter shall not apply to defects resulting from:

- Improper or inadequate maintenance by customer
- Unauthorized modification or misuse
- Operation outside of the environment specifications of the products

For more information, please contact the supplier.

